Novel surface acoustic wave (SAW)-driven closed PDMS flow chamber

نویسندگان

  • Lothar Schmid
  • Achim Wixforth
  • David A. Weitz
  • Thomas Franke
چکیده

In this article, we demonstrate a novel microfluidic flow chamber driven by surface acoustic waves. Our device is a closed loop channel with an integrated acoustic micropump without external fluidic connections that allows for the investigation of small fluid samples in a continuous flow. The fabrication of the channels is particularly simple and uses standard milling and PDMS molding. The micropump consists of gold electrodes deposited on a piezoelectric substrate employing photolithography. We show that the pump generates a pressure-driven Poiseuille flow, investigate the acoustic actuation mechanism, characterize the flow profile for different channel geometries, and evaluate the driving pressure, efficiency and response time of the acoustic micropump. The fast response time of our pump permits the generation of non-stationary flows. To demonstrate the versatility of the device, we have pumped a red blood cell suspension at a physiological rate of 60 beats/min.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UV epoxy bonding for enhanced SAW transmission and microscale acoustofluidic integration.

Surface acoustic waves (SAWs) are appealing as a means to manipulate fluids within lab-on-a-chip systems. However, current acoustofluidic devices almost universally rely on elastomeric materials, especially PDMS, that are inherently ill-suited for conveyance of elastic energy due to their strong attenuation properties. Here, we explore the use of a low-viscosity UV epoxy resin for room temperat...

متن کامل

Fabrication, operation and flow visualization in surface-acoustic-wave-driven acoustic-counterflow microfluidics.

Surface acoustic waves (SAWs) can be used to drive liquids in portable microfluidic chips via the acoustic counterflow phenomenon. In this video we present the fabrication protocol for a multilayered SAW acoustic counterflow device. The device is fabricated starting from a lithium niobate (LN) substrate onto which two interdigital transducers (IDTs) and appropriate markers are patterned. A poly...

متن کامل

Surface acoustic wave (SAW) directed droplet flow in microfluidics for PDMS devices.

We direct the motion of droplets in microfluidic channels using a surface acoustic wave device. This method allows individual drops to be directed along separate microchannel paths at high volume flow rates, which is useful for droplet sorting.

متن کامل

Acoustothermal heating of polydimethylsiloxane microfluidic system

We report an observation of rapid (exceeding 2,000 K/s) heating of polydimethylsiloxane (PDMS), one of the most popular microchannel materials, under cyclic loadings at high (~MHz) frequencies. A microheater was developed based on the finding. The heating mechanism utilized vibration damping in PDMS induced by sound waves that were generated and precisely controlled using a conventional surface...

متن کامل

Microfluidic Synthesis of Multi-layer Nanoparticles for Drug & Gene Delivery

Multiple layer nanoparticles offers a likelihood of success in drug delivery, as it provides a solution for a more controllable drug release, as with such structures, control over the capsule wall thickness, permeability, stability, and degradation characteristics can be achieved (Kumar, 2008). Using PDMS microfluidic devices to synthesize polymeric multilayer microparticles has become popular ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011